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Abstract

Purpose: In surgical image segmentation, a major challenge is the extensive
time and resources required to gather large-scale annotated datasets. Given the
scarcity of annotated data in this field, our work aims to develop a model that
achieves competitive performance with training on limited datasets, while also
enhancing model robustness in various surgical scenarios.
Methods: We propose a method that harnesses the strengths of pre-trained
Vision Transformers (ViT) and data efficiency of Convolutional Neural Networks
(CNN). Specifically, we demonstrate how a CNN segmentation model can be
used as a lightweight adapter for a frozen ViT feature encoder. Our novel feature
adapter uses cross-attention modules that merge the multi-scale features derived
from the CNN encoder with feature embeddings from ViT, ensuring integration
of the global insights from ViT along with local information from CNN.
Results: Our method outperforms current models in surgical instrument seg-
mentation on the Robust-MIS 2019 dataset and showcases remarkable robustness
through cross-dataset validation across five public datasets.
Conclusion: In this study, we presented a novel approach integrating ViT and
CNN. Our unique feature adapter successfully combines the global insights of ViT
with the local, multi-scale spatial capabilities of CNN. This integration effectively
overcomes data limitations in surgical instrument segmentation. The source code
is available at: https://github.com/weimengmeng1999/AdapterSIS.git.
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1 Introduction

Detecting and tracking surgical instruments in laparoscopic videos is crucial for
autonomous surgery and enhanced clinical support [1]. The trend in the field is
towards the utilization of deep learning methodologies [2, 3]. Current models heav-
ily depend on fully supervised learning, requiring extensive annotated data. However,
acquiring such data, especially in surgical tool segmentation, is expensive and time-
intensive, resulting in the lack of large-scale annotated datasets, a significant hurdle
for precise model development. Additionally, biases in training datasets arise from out-
dated datasets, geographical diversity, and unverified clinical relevance, affecting the
robustness needed for applications like autonomous surgery.

In light of the rapid advancements in large-scale ViTs [4] and their excellent ability
to learn from extensive data, pre-trained ViT models [4, 5] offer promising potential
for downstream tasks [6–8]. CNNs have revolutionized the medical image segmentation
field. However, their localized convolution operations limit capturing global and long-
range semantic interactions. Transformers provide global self-attention but might lack
detailed localization abilities [9]. Merging CNN and ViT is a recent trend to leverage
their strengths [9–12]. Yet, these methods, often starting from scratch, might not fully
exploit pre-trained knowledge from large image datasets, a significant ViT strength.
Moreover, while most of them focus on bridging the global and local information gaps
between the two methods, they neglect the inherent advantages of each: CNNs exhibit
better performance with limited datasets, whereas ViTs are superb with extensive
data training.

Therefore, given the constraints imposed above, we harness the full potential of
both ViT and CNN. We are particularly focused on capitalizing on the pre-trained
general knowledge derived from ViT to enhance surgical image segmentation models,
with an overarching goal of optimal both of the model performance and robustness
within the complex and diverse domain of surgical images. Our main contributions are:
1) Adapting a pre-trained and frozen ViT based on DINOV2 [5] to a CNN backbone
segmentation model optimized for scenarios with limited annotated data; 2) Intro-
ducing innovative adapter modules with cross-attention (CA) to integrate the global
information from ViT and local features from CNN; 3) Enhancing the generalizability
of the segmentation model across multiple datasets.

2 Related Work

2.1 Surgical Instrument Segmentation

The majority of surgical instrument segmentation works are CNN-based methods. For
example, ISINet [3] proposes an instance-based surgical instrument segmentation CNN
network that includes a temporal consistency module. OR-UNet [2] is introduced as
an optimized 2D UNet [13] for instrument segmentation. There is a growing trend
of exploring ViT-based methods. MATIS [14] is a fully transformer-based method
that utilizes pixel-wise attention and masked attention modules. TraSeTR [15] intro-
duces a Track-to-Segment transformer that leverages tracking cues to enhance surgical
instrument segmentation.
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2.2 Pre-trained Vision Transformers

Driven by extensive pretraining on large datasets, ViT [4] employs self-supervised
learning for vision tasks. DINOV2 [5] improves the training of large-scale ViT mod-
els with 1B parameters and distils it into smaller models. The pre-trained ViTs are
successfully applied to the downstream tasks such as image classification [6, 7], object
detection [5], semantic segmentation [5, 6], and video action classification [7]. Research
on fine-tuning cross-attention modules with pre-trained embeddings [16] aligns with
our method of harnessing pre-trained knowledge from large-scale ViT models. Yet,
there is no existing work that adapts pre-trained ViT features by a CNN adapter,
crucial due to limited data availability [4].

2.3 Hybrid CNN and ViT Models

ViTs and CNNs inherently complement each other. Numerous studies fuse two archi-
tectures to address their limitations. For instance, TransUNet [9] hybrids in which ViT
processes CNN-derived patches for global context. TransFuse [10] parallels ViT and
CNNs for efficient global and multi-level spatial feature fusion. There are also works
that simulate the characteristics of CNN in their ViT models [7, 16] or directly adopt
the cross-attention mechanism to augment the CNN structure [17], but none of the
existing work integrates cross-attention into a CNN model to serve as a lightweight
adapter for a pre-trained ViT model.

3 Method

We present the three primary elements of our model with the detailed architecture
illustrated in Fig. 1. The ViT feature encoder remains frozen, with only the adapter
and the CNN backbone segmented undergoing training. The CNN decoder receives
three distinct feature inputs: 1) Patch tokens from the ViT branch, encapsulating local
information; 2) Output from the adapter, which combines local and global insights
from both the ViT and CNN branches; 3)Feature maps from the CNN encoder,
preserving the spatial information of the original image.

3.1 Vision Transformer Encoder

Our vision transformer encoder follows the established method inspired by ViT [4].
Given an input image, denoted as I ∈ RH×W×C , where H is the height and W is the
width. The ViT encoder initially divides the image into patches, forming a sequence
represented as I = [I1, . . . , IN ] ∈ RN×P 2×C , where P corresponds to the patch size.
The count of patches, N , is calculated as N = HW

P 2 . Each of these individual patches is
then converted into a 1D vector and linearly projected, resulting in a sequence of patch
embeddings, denoted as I0 = [EI1 , . . . , EIN ] ∈ RN×D, with the transformation matrix

E ∈ RD×(P 2C). To account for positional information, the ViT encoder introduces
learnable position embeddings to combine with the patch sequence. The transformer
encoder then maps the input sequence of embedded patches with position encoding

to the output xV iT =
[
xpatch
V iT ||xCLS

V iT

]
, a contextualized encoding sequence containing
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Fig. 1 An overview of our method. Our model includes two main parts: the top consists of a frozen
pre-trained ViT feature encoder; the middle introduces adapter modules that enable CA integra-
tion between multi-scale features from CNN and pre-trained ViT features; the bottom is backbone
segmenter tailored for instrument segmentation; q is query and k/v is key/value.

rich semantic information. To utilize pre-learned knowledge, we employed and froze
the entire ViT model. However, we selectively integrated the ViT feature embeddings
from the deeper layers into our backbone segmentation model using adapters. We
opted not to utilize the shallower layers to optimize computational efficiency.

3.2 Feature Adapter

Building on the strengths of ViT and CNN highlighted in Section 1, our adapter
integrates multi-scale features from the CNN backbone segmentation encoder with
those from the pre-trained ViT feature encoder.

Cross Attention for ViT In our CA module for the ViT, we first utilize the
patch token at the ViT branch, denoted as xpatch

V iT , which includes local information
from the ViT pre-trained knowledge, as the query to exchange information among
the multi-scale feature embeddings from the backbone segmentation encoder and then
back project it to the ViT branch.

For visual clarity, Fig. 2 illustrates the CA module for ViT. Specifically, the
multi-scale feature embeddings from the backbone segmenter encoder were initially
aggregated. Several fully connected layers are applied at the end to project the feature
maps to D dimensions, which equals the patch embedding size of the ViT branch. The
multi-scale feature map from the backbone encoder, denoted as xHW/S , xHW/2S , and
xHW/4S , then comprises D-dimensional features at 1/S, 1/2S, and 1/4S resolutions
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Fig. 2 Cross-attention module for the ViT branch and backbone segmentation model: (1) Cross
Attention ViT The feature embedding from CNN serves as a query to interact with the patch
tokens from the ViT branch; (2) Cross Attention CNN The CLS token of the ViT serves as a
query token to interact with the feature map from CNN through attention.

of the original image, encompassing features with distinct receptive fields. Then we
flatten and concatenate these feature maps, as illustrated in Eq. (1), serving as the
key and value for the cross attention, where || denotes the concatenation operation.

xCNN = Flatten(FC(
[
xHW/4S ||xHW/2S ||xHW/S

]
)) (1)

Here, S represents the reduction scaling factor of the feature map size from the
first layer of the backbone segmenter to the original input size. By taking xpatch

V iT , the

module then performs CA between xpatch
V iT and xCNN . Mathematically, the CA can be

expressed as:
q = xpatch

V iT Wq, k = xCNNWk, v = xCNNWv,

A = softmax

(
qkT√
D/h

)
, CA(xCNN ) = Av

where Wq,Wk,Wv ∈ RD×(D/h) are learnable parameters, D and h are the embed-
ding dimension and number of heads. Specifically, the output of the CA for ViT
module, denoted as zV iT , is defined by the input from ViT and CNN branches with
projection operations and residual shortcut as follows:

ypatchV iT = gV iT (pV iT (xpatch
V iT ) + CA(xCNN )), zV iT = xV iT

cls ||ypatchV iT (2)

Where pV iT (·) and gV iT (·) are projections to align dimensions.
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Cross Attention for CNN Our CA for CNN module is designed to facili-
tate information exchange between the global insights harnessed by the ViT branch
and the localized details captured within the backbone segmentation encoder. The
core mechanics of this process are akin to CA for ViT, albeit with a distinctive
adjustment—here, the query and key/value roles are swapped.

More specifically, the multi-scale feature xCNN in Eq. (1) now takes on the role
of the query. For the key and value, we exclusively utilize the CLS token of the ViT
feature embedding. The CLS token has already assimilated abstract information across
all patch tokens within the ViT branch, constituting a global representation. This CA
procedure can be concisely expressed as follows:

q = xCNNWq, k = xCLS
V iT Wk, v = xCLS

V iT Wv,

A = softmax(
qkT√
D/h

), CA(xCLS
V iT ) = Av

Note that the character definitions remain consistent with those in the CA for ViT
module. Therefore, similar to the above, the output of the CA for CNN module with
the residual shortcut can be defined as below:

zCNN = gCNN (xCNN +CA(xCLS
V iT )) (3)

where gCNN (·) is the projection that aligns the dimension of the output feature
map size to the input for the feed-forward network. This approach ensures that the size
of the feature embeddings remains unchanged, while simultaneously amalgamating
global insights from the ViT branch and local details from the CNN branch.

Feed Forward Network This module is a composite of key layers: convolution,
activation, dropout for regularization, and a fully connected layer, working together
to process and enhance the feature map to obtain z′CNN . Their concerted efforts aim
to extract vital features essential for the backbone segmentation model’s decoder.

Data Flow The latter adapter takes the output from the previous adapter, z′CNN ,
which has interacted with block i of the ViT branch, as its input for the subsequent
CA for ViT module, engaging with the feature embedding xV iTi+1 from block i + 1
of ViT. Note that the input of block i + 1 is the sum of the output of CA for ViT
in the previous adapter and the feature embedding xV iTi of block i, denoted as zV iT .
The final output of the last adapter, interfaced with the final ViT block, serves as the
input for the backbone segmentation decoder.

3.3 Backbone Segmentation Model

For our backbone segmentation model, we use the UNet-like [13] structure. The
encoder is constructed as a series of stride-2 3×3 convolutions and MaxPooling layers.
The feature maps from each layer of the encoder are contacted to create multi-scale
feature maps, subsequently fed into the adapter as shown in Section 3.2.

For the input to the backbone decoder, the ultimate feature map from the CNN
encoder is combined with the output of the adapter which encompasses global insights
from the ViT branch and local information from the CNN branch. Additionally, the

6



patch tokens of the final feature embedding from the ViT branch were also contacted
to preserve the contextual information of ViT.

Our backbone decoder is designed with a sequence of upsampling and convolutional
layers. Significantly, we implement skip connections, a key feature that links feature
maps at corresponding scales from the encoder to the decoder.

3.4 Implementation Details

Loss Function. In surgical image datasets, a substantial number of images predom-
inantly comprise a background with no visible tools. Even in cases where tools are
present, they often occupy a relatively small portion of the overall image. To address
the class imbalance, we combine the Dice Loss with the Focal Tversky Loss for the
assessment of our predictions against the ground truth segmentation map.

Model Configuration We construct our ViT feature encoder in three distinct
sizes, denoted as ViT-T, ViT-S, ViT-B, and ViT-g , all pre-trained using the DINOV2
framework [5]. These models exhibit varying parameter counts for our adapters: 21M,
86M, 14.0M, and 300M, respectively. The number of attention heads is configured as 6,
6, and 12. In our setup, we chose a patch size of 14, resulting in a feature map scale of
1/14 for the ViT models. Additionally, for the CNN branch, the scaling factor S is set
to 2, effectively leading to multi-scale feature maps with scales of 1/4, 1/8, and 1/16.

Hyper Parameters The input image is 588×588, considering the ViT branch’s
input requirement, and augmented with the image augmentation techniques presented
in [4]. We adopt the SGD optimizer with a learning rate of 0.01 and momentum of 0.9.
We applied the linear scaling rule to reduce the learning rate. The model is trained
on 2 V100 GPUs, and the batch size is set to 16.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets Our binary segmentation experiments on the Robust-MIS 2019 [1] dataset
utilized 5,983 annotated images for training, with three-stage testing, where stage 3
is from a procedure unseen during training. Multi-class segmentation was performed
on EndoVis 2017 [18] and EndoVis 2018 [19]. Cross-dataset validation was conducted
across the aforementioned datasets, along with CholecSeg8k [20] and AutoLaparo [21].
Each dataset was split into training and validation subsets at an 8:2 ratio with no
patient overlap across folds.

Evaluation Metrics For the state-of-the-art comparison experiments on binary
segmentation, we assessed our model using the metrics outlined in the Robust-MIS
2019 challenge [1], which includes Dice Similarity Coefficient and Normalized Surface
Dice (NSD) [1]. Following the challenge’s specifications [1], we adopted a 13-pixel
tolerance for NSD. For the cross-dataset validation and ablation study, we also use
the mean Intersection over Union (mIoU). For multi-class segmentation, we applied
Ch IoU, ISI IoU, and mc IoU following the evaluation metrics provided in [3, 22].
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4.2 Results

Comparison to State-of-the-art In Table 1, we compare our model with several
state-of-the-art models on Robust-MIS 2019 dataset for binary segmentation. Our
model outperformed the CNN models designed for this task and the pre-trained ViT
models for natural semantic segmentation downstream, indicating the success of merg-
ing the pre-trained knowledge with the CNN models. The existing hybrid approaches
were trained for a shorter duration (smaller epochs) which signifies a potential for
improvement. An essential takeaway here is that our proposed model exhibits superior
efficiency: it requires minimal training to yield outstanding outcomes.

Table 1 Comparison on the Robust-MIS 2019 dataset between state-of-the-art models: above are
the fully supervised CNN and ViT models for surgical segmentation task; the middle is the existing
hybrid CNN-ViT models (all trained for 400 epochs); the bottom is the pre-trained ViT model for
semantic segmentation downstream

Method Whole Testing Stage 1 Stage 2 Stage 3
Mean Dice NSD Mean Dice NSD Mean Dice NSD Mean Dice NSD

OR-Unet [2] 88.0 86.2 90.2 88.5 87.9 85.6 85.9 84.5
Robust-MIS 2019 winner [1] 90.1 88.9 92.0 92.7 90.2 88.6 89.0 86.4
ISINet [3] 88.9 86.3 90.9 87.6 89.6 86.5 86.2 84.7

TransUNet[9] 79.6 76.5 82.2 77.9 80.4 76.2 75.2 75.4
TransFuse [10] 80.1 78.6 82.2 79.1 81.3 79.0 76.8 77.7

Swin TransV2 [7] 82.9 78.6 84.6 80.2 84.0 79.9 80.1 75.7
MaskFormer [6] 84.1 80.5 87.2 84.3 85.9 80.2 79.2 77

Ours 92.9 91.5 94.2 92.4 92.6 91.4 91.9 90.7

For the multi-class segmentation task, we also compare our model with existing
models including S3Net[22], TraSeTR[15], and MSLRGR [23]. Table 2 shows our model
outperforms the state-of-the-art on the EndoVis 2018 dataset with +15.78 percentage
point (pp) gain in mc IoU. The improvements across both datasets demonstrate the
multi-class segmentation capability of our model. Moreover, our model outperforms
MSLRGR [23], which directly introduces global context into CNN, suggesting our
approach of integrating the global information from pre-trained ViT is more effective
than the state-of-the-art models.

Table 2 Comparison of our method with state-of-the-art methods on the EndoVis 2017 and
EndoVis 2018 datasets for multi-class segmentation.

EndoVis 2017

Method Ch IoU ISI IoU Bipolar Prograsp Large Vessel Grasping Monopolar Ultrasound mc IoU
Forceps Forceps Needle Driver Instrument Applier Curved Scissors Probe

TraSeTR [15] 60.40 65.20 45.20 56.70 55.80 38.90 11.40 31.3 18.20 36.79
S3Net [22] 72.54 71.99 75.08 54.32 61.84 35.5 27.47 43.23 28.38 46.55

Ours 73.96 69.15 66.45 67.56 70.52 42.68 12.9 40.15 29.12 47.06

EndoVis 2018

TraSeTR [15] 76.20 - 76.30 53.30 46.50 40.60 13.90 86.30 17.50 47.77
S3Net [22] 75.81 74.02 77.22 50.87 19.83 50.59 0.00 92.12 7.44 42.58
MSLRGR [23] - - 69.66 43.56 0.15 34.71 3.87 87.16 12.03 35.88

Ours 85.25 82.99 85.72 67.86 72.56 89.16 6.39 91.07 22.12 63.55
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Cross Dataset Validation We conducted experiments using a cross-dataset val-
idation approach, where we trained the model on one dataset and validated it on
another, shown as Table 3. We present comparative experiments between our model,
the top-performing CNN model OR-Unet [2], and ViT based model MaskFormer [6].

Table 3 Cross dataset validation on EndoVis 2017, EndoVis 2018, CholecSeg8k, Robust-MIS 2019,
and AutoLaparo datasets for OR-Unet [2], MaskFormer [6], and our method.

Train dataset Model
Test Dataset

EndoVis 2017 EndoVis 2018 CholecSeg8k Robust-MIS 2019 AutoLaparo
Mean Dice mIoU Mean Dice mIoU Mean Dice mIoU Mean Dice mIoU Mean Dice mIoU

EndoVis 2017
OR-UNet [2] 92.4 81.3 73.0 62.4 74.3 65.7 59.2 10.3 74.5 56.7

MaskFormer [6] 93.2 84.2 79.8 70.2 73.8 65.2 54.2 19.7 83.2 52.8

Ours 98.9 96.2 94.2 85.8 85.9 80.7 88.4 80.6 89.9 69.7

EndoVis 2018
OR-UNet [2] 85.1 64.2 89.5 77.9 68.2 64.3 57.4 12.9 76.9 52.8

MaskFormer [6] 84.3 72.2 88.2 81.8 74.8 61.9 56.7 31.9 77.9 65.9

Ours 98.1 89.5 94.9 86.2 86.2 81.5 84.5 63.2 90.4 83.9

CholecSeg8k
OR-UNet [2] 82.3 71.4 69.9 53.2 82.7 75.4 51.5 8.2 69.7 61.4

MaskFormer [6] 80.1 70.2 78.7 69.9 86.9 80.7 52.9 20.3 72.9 62.2

Ours 95.9 88.6 92.1 82.8 91.9 86.6 90.1 83.5 90.2 82.4

Robust-MIS 2019
OR-UNet [2] 73.6 45.5 70.8 59.2 67.6 55.2 88.0 86.2 65.1 62.5

MaskFormer [6] 86.4 79.0 81.8 70.1 77.2 62.7 84.1 80.5 71.8 65.2

Ours 97.9 91.4 93.2 84.5 86.5 70.2 92.9 86.6 95.1 89.5

AutoLaparo
OR-UNet [2] 71.9 65.2 69.1 52.7 62.7 43.1 62.1 31.4 82.1 75.3

MaskFormer [6] 85.1 73.6 79.0 60.8 76.4 63.2 60.5 37.4 92.7 84.9

Ours 97.2 89.9 91.8 81.2 89.2 84.6 91.6 83.7 96.9 92.3

OR-UNet [2] and MaskFormer [6] experience significant performance drops when
the training and testing datasets are different, while these variations are substantially
reduced when they are trained and tested on the same dataset, yet the performance
variability underscores their limited generalizability. Conversely, our model maintains
consistent scores across different datasets, indicating its excellent robustness and accu-
racy. Some combinations, like training on EndoVis 2017 and testing on Robust-MIS
2019, show a more significant drop in performance than others, which hints at chal-
lenges the model faces when trained on a comparatively simpler dataset and tested
on more complex, real-world data.

4.3 Ablation Study

Transformer Feature Encoder We conducted an ablation on the transformer fea-
ture encoder, and observed utilizing only the last layer resulted in a notable drop
in both Dice scores and mIoU across datasets. However, by incorporating the last
3 layers, we observed performance metrics are close to that using all layers. Impor-
tantly, this configuration with the last 3 layers strikes a balance, offering near-optimal
performance while being significantly more computationally efficient.

Adapter We conduct the ablation study with or without CA for ViT and CA
for CNN as shown in Table 5. When CA modules are removed entirely, there’s a
substantial decrease in Dice and mIoU scores, highlighting their importance to the
model’s performance and robustness. The drop is less severe when CA is removed only
for CNN, suggesting the importance of integrating patch tokens from the pre-trained
ViT embeddings.
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Table 4 Ablation studies on the transformer encoder when trained on Robust-MIS 2019 and
tested on Robust-MIS 2019 and cross-dataset validated on CholecSeg8k dataset.

Transformer Encoder
Robust-MIS 2019 CholecSeg8k

Dice mIoU Dice mIoU

All blocks 93.2 87.1 87.4 71.5
Last block 88.9 83.2 83.7 67.5
Last 3 blocks (ours) 92.9 86.6 86.5 70.2

Cross Attention for ViT We offer the ablation study for the adapter module
in Table 5. For the CA for ViT module, we observe that 1) when solely relying on
the single scale, there was a decrease of 3.4 pp in Dice scores on Robust-MIS 2019,
indicating the significance of multi-scale features in capturing diverse spatial infor-
mation; 2) Adopting the strategy of replacing the patch tokens with CLS token has
led to some performance decreases, suggesting incorporating the global information
from the CLS token, loses the local details that patch tokens offer; 3) Excluding the
shortcut residuals leads to a drop in the Dice score by 2.3 pp for Robust-MIS 2019
gave the importance of residual shortcut to maintain information flow; 4) Even with
variations in the ablation studies causing some drops in performance, the model’s con-
sistent decent scores on CholecSeg8k, underscores its superb generalization capability
across datasets.

Table 5 Ablation studies for adapter when trained on Robust-MIS 2019 and tested on
Robust-MIS 2019 and cross-dataset validated on CholecSeg8k dataset.

Adapter
Robust-MIS 2019 CholecSeg8k

Dice mIoU Dice mIoU

× CA ViT&CNN 85.3 76.9 81.2 66.5
× CA ViT 88.9 80.1 82.6 65.7
× CA CNN 89.8 83.4 83.9 68.2

CA ViT

Single scale 89.5 81.9 83.2 68.2
Patch → CLS 89.9 82.2 83.9 69.3
× Residual 90.6 85.4 84.1 70.5

CA CNN

Single scale 91.3 87.4 82.7 68.6
CLS → Patch 89.2 81.5 82.6 70.1
× Residual 91.6 86.9 85.5 69.3

Ours 92.9 86.6 86.5 70.2

Cross Attention for CNN In the context of the CA for CNN module shown in
Table 5, using only the single scale results in a lesser decline in Dice score compared
to that in CA for ViT, which suggests the output of CA for ViT already embodies
multi-scale information, reducing its impact for the latter CA for CNN module. Opting
to substitute the CLS token with patch tokens, despite being computationally costly,
has observed a decrease in performance. This highlights the significance of integrating
global information within the CNN branch.
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5 Conclusion

In conclusion, our research presents an innovative approach to surgical image seg-
mentation by combining ViT with a CNN used as a lightweight adapter module. Our
work tackles the challenge of gathering large-scale annotated data and enhances the
generalizability of different surgical scenarios. Our unique feature adapter, integrating
cross-attention modules, facilitates the fusion of global and local, multi-scale spatial
information from ViT and CNN, respectively. Our model achieves excellent accuracy
and robustness across diverse surgical scenarios, as evidenced by our model’s supe-
rior performance on the Robust-MIS 2019 dataset and across five other datasets. Our
model has potential for applications in autonomous surgery, offering a solution that is
both robust and adaptable to varying surgical environments.
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